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Mixing by chaotic advection in a twisted-pipe flow is used here to investigate the efficiency of this flow in
the liquid/liquid dispersion process. This study focuses on water/oil dispersions produced by continuous
water injection into a main oil flow, for small Dean numbers. The drop sizes obtained with the chaotic-
advection twisted-pipe flow are compared with those in a straight pipe and a helically coiled flow for the
same conditions. It is found that the resulting dispersions are finer and more mono-dispersed in the cha-
otic advection flow. These results are compared with the theoretical maximum diameter dmax determined
by the Grace theory in which the viscous stress controls the breakup phenomena. For this purpose, the
kinematic field is computed from the theoretical formulae for Dean flow. The strain rate fields in the pipe
cross-section are then analytically computed and used to predict the maximum drop diameter. The the-
oretical values are identical for the three configurations (straight, helically coiled, and twisted pipe) up to
a critical Dean number, where the secondary flow becomes significant. Beyond this value, the shear stress
is enhanced in the twisted-pipe flow compared with the straight-pipe flow, and the predicted drop diam-
eters are smaller. An interpretation of the higher dispersive performance of the chaotic flow is provided
by the Lagrangian trajectories of the particles.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The advantages offered by a chaotic-advection twisted pipe-
flow used as a mixer and/or heat exchanger have been established
in previous studies (Aref, 1984; Jones et al., 1989; Acharya et al.,
1992; Peerhossaini et al., 1993; Castelain et al., 1997; Mokrani
et al., 1998a,b; Le Guer et al., 2001; Lemenand and Peerhossaini,
2002) when compared with a straight pipe or helically coiled pipe.
The geometric perturbation of the twisted-pipe configuration gen-
erates three-dimensional chaotic trajectories in the secondary
Dean flow induced by curvature effects. The Dean number charac-
terizes the ratio between the viscous forces and the centrifugal
forces, and is defined as

De ¼W2a3

Rm2 ð1Þ

where a is the tube inner radius and R the bend curvature radius.
Chaotic advection in such geometries produces efficient macro-

mixing and heat transfer in the laminar regime. The heat transfer is
enhanced in a particular range of the Dean number [60–1000], with-
out significant increase in the pressure drop (Mokrani et al., 1998a,b).

This flow finds applications in the pharmaceutical industry or
food industry to process highly viscous fluids or fluids with
ll rights reserved.

x: +33 2 40 68 31 41.
fr (H. Peerhossaini).
stress-sensitive long molecular chains. The purpose of this study
is to investigate the capacity of chaotic advection to generate
liquid/liquid dispersion.

An experimental study was undertaken in order to observe the
effect of chaotic advection on the dispersion of water in a laminar
oil flow, and also to obtain experimental data for validation of the
results of a theoretical approach to the water–oil dispersion in this
flow. The theoretical approach is based on the determination of
drop equilibrium under the joint action of viscous stresses gener-
ated by chaotic advection flow and interface tension.

In a curved pipe, the centrifugal force induces a secondary flow
in the form of counter-rotating cells called Dean roll-cells that are
superimposed on the axial flow and play the role of internal agita-
tors of the flow. Analytical solutions for Dean flow have been pro-
posed by Jones et al. (1989) and Le Guer and Peerhossaini (1991).

In the present work, the theoretical determination of the equi-
librium drop size is based on Taylor’s analysis (Taylor, 1953) as
extended by Grace (1982). From this it is possible to compute
the Eulerian distribution of the strain rates in the pipe cross-sec-
tion, and to propose a model for the maximum shear and elonga-
tion rates introduced in Grace’s work (1982) to calculate the
theoretical maximum diameters with no fitting constant. The addi-
tional forces introduced by Dean flow above a certain Dean number
generate stresses due to stretching and folding that are over and
above the basic strain rates in the straight pipe, and these stresses
enhance the breakup of water drops injected into the main oil flow.
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Fig. 2. Twisted pipe test section.
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From this point of view, there is no theoretical difference between
the helically coiled and twisted-pipe chaotic advection configura-
tions. The drop diameters predicted by the theoretical approach
are then compared with the experimental values for the three con-
figurations (straight, helically coiled, and twisted-pipe flows).

A Lagrangian analysis of the flow was undertaken to explain the
finer drop size observed experimentally in the chaotic advection
flow. A comparison of the trajectories and of the Poincaré section
of the fluid particles after 25 bends, for helically coiled and chaotic
advection flows, qualitatively confirms that the latter configuration
provides better macro-mixing. This feature is clear in the residence
time distribution (RTD) for the two configurations and helps to
explain the better dispersive performance of the chaotic advection
flow. An illustration for De ¼ 100 shows the improved homogeniz-
ing properties of the chaotic advection configuration.

This paper is organized as follows. In Section 2 the experimental
setup and experimental results for the water–oil dispersion are
presented. Section 3 is devoted to the theoretical prediction of
droplet diameters by an Eulerian approach. The mechanical history
of droplets in the flow determined by Lagrangian approach is given
in Section 4, as is a presentation of the resident time distribution of
fluid particles. Conclusions are drawn in Section 5.
Table 1
Test section dimensions.

Diameter of circular duct 8 mm
Bend curvature radius 44 mm
Curvature angle in bend plane p

2 rad
Number of bends 25
Total curved length 1.8 m
Straight length between bends 0.2 m
Total length 2 m
2. Experimental setup and methods

2.1. Experimental setup

As shown in Fig. 1, the test section is composed of a succession
of 90� bends with a given curvature radius. It can be arranged in
both the helically coiled pipe and the twisted-pipe configurations
where each bend is rotated in the orthogonal plane with respect
to the preceding one, as seen in Fig. 2. Both geometries have 25
bends of 8 mm inside diameter D, the same unfolded length
ðL ¼ 2 mÞ and the same bend curvature radius ðR ¼ 44 mmÞ. The
straight pipe has also an inside diameter of D ¼ 8 mm and
unfolded length L ¼ 2 m. The dimensions of the test section are
given in Table 1.

A schematic diagram of the hydraulic loop used here is shown
in Fig. 3a. It has four main elements:

– oil admission circuit;
– water injection system;
– test section;
– flow visualization device at the test section exit.
The tank contains 100 L of a vegetable oil, allowing experimen-
tation for 1 h at a Reynolds number of Re ¼ 50 and 5 min at
Centrifugal
force F

Dean roll-cells

(a)

Fig. 1. Generation of spatially chaotic particle paths in laminar, steady, and thre
Re ¼ 600. The flow rates are measured by rotameters with 5% accu-
racy (Sart Von Rohr SASTM for water and Krohne DusburgTM for oil).

The oil is pumped by a centrifugal pump, while the water is
supplied by a constant-level feed tank connected to the water
supply network. The flow rate is monitored by a back-pressure
valve. Water is injected at the twisted pipe inlet by an injection
needle of inside diameter 2 mm, designed so that the velocity ratio
(injection/main flow) does not exceed 1.5 for the most extreme
conditions (water volume fraction of 10%). The current volume
fractions are much lower, so that perturbations at the injection
might not induce an additional breakup of the water droplets.

2.2. Drop size measurement

The flow visualization system (Fig. 3b) is a rectangular
PlexiglasTM window positioned on top of a parallelepipedic box,
F

F

Chaotictrajectories

Flow

(b)

e-dimensional flow: (a) regular Dean flow; and (b) twisted pipe Dean flow.
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Fig. 3. (a) Schematic diagram of experimental setup. (b) Flow visualization system.
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with conic/rectangular connections at each end. At the entrance,
directly at the exit of the test section, the diffuser, is designed to
minimize flow disturbances by maintaining (as much as possible)
the shear stresses at the same level as in the test section, and, with
a 7� angle, to avoid recirculations at low flow rates and thus to pre-
vent drop coalescence at the pipe exit. Moreover, the box depth is
small enough (depth is 13 mm, equals to 1.625 D) to prevent drops
overlapping. In fact overlapping did not occur for the range of flow
rates in this experiment, but may occur for higher flow rates.

Pictures of the emulsion are taken with a high-frequency digital
CanonTM camera placed vertically above the visualization window
with its optical axis perpendicular to the window’s plane. The
emulsion flow in the visualization box is lit from below by an
intense diffuse white light. For given operating conditions, a
sequence of independent images is selected and recorded; this
sequence, an example of which is shown in Fig. 4, constitutes our
statistical sample of the drops. Drop diameters are measured from
the recorded images using IMAQ Vision Builder 6 software. At the
end of the analysis, a table of diameters of at least 400 drops for
each run is obtained. The experimental size distributions are fitted
with a log-normal law. By taking 99% of the cumulative volume
Fig. 4. Image of droplets taken by fast digital camera (chao
curve, a representative value for the maximum diameter can be
determined. The standard deviation factor is also of interest for
the quality of the emulsification process in further applications. If
k is the log-standard deviation, the linear deviation b can be
deduced from

b ¼ sinhðkÞ ð2Þ

Measurements were carried out for the three configurations:
straight pipes, helically coiled pipes, and twisted pipes. By the
log-normal law, the maximum drop diameter is found by reading
99% from the frequency of the cumulative diameter values on the
fitted log-normal curve, as shown in Fig. 5 for a straight tube.

2.3. Working fluids

The continuous phase is commercial food-grade vegetable oil,
and tap water is injected as the dispersed phase. The kinematic vis-
cosity of the oil was measured using a MettlerTM RM180 rheometer.
To measure the surface tension of the working fluid we used the
Wilhelmy method: a metallic blade suspended from a balance by
a stem is plunged into the liquid; the balance measures the vertical
tic advection configuration – oil flow rate Q = 50 l h�1).
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force F exerted on the stem by withdrawing the blade from the
liquid. The surface tension r is calculated by:

F ¼ rf cos h ð3Þ

where f is the wet perimeter. The platinum blade is previously
passed through a flame to obtain perfect adhesion to the liquid sur-
face. The ideal contact angle is h = 0�, for which the term cosh in Eq.
(2) tends to 1. Therefore the value of the surface tension r can be
deduced from the geometric characteristics of the blade.

As the oil viscosity lc is very sensitive to temperature and has
significant consequences on the dispersion through the viscous
stress, the oil temperature T was controlled by a Chromel/Alumel
(type K) thermocouple in the oil admission circuit. For modelling
purposes, oil viscosity was measured with an AR1000 TA InstrTM

rheometer and fitted by Arrhenius’ law:

lc ¼ lc0
exp

E
RT
� E

RT0

� �
ð4Þ

where E = 29 kJ, R = 8.314 J K�1 mol�1 and lc0
is the oil viscosity for

a given temperature T0. The physical properties of the two fluids are
given in Table 2.

2.4. Reproducibility

Runs were repeated three times on different days to check the
effect of a new operator and a new trial on the measured character-
istics of the final emulsion in the test section. Nominal operating
conditions at Dean number De ¼ 70; the resulting size distribu-
tions of the three runs were compared, leading to a maximum error
of ±6% in the maximum drop diameter.
Table 2
Characteristics of working fluids used in experiments.

Interfacial tension 0.0192 N m�1

Oil density 910 kg m�3

Water density 1000 kg m�3

Water dynamic viscosity 0.001 Pa s
Oil dynamic viscosity at 25 �C 0.052 Pa s
Viscosity ratio 0.0192
2.5. Experimental results for drop diameters

Drop size distributions were measured for the three configura-
tions: straight, helically coiled and twisted pipes. A summary of the
results is given in Table 3.

The maximum drop diameters are plotted versus the oil flow
rate in Fig. 6. As expected, the drop diameters decrease with
increasing flow rate, since the viscous stresses increase with yield
velocity and velocity gradients. The water (dispersed phase) flow
rate is not taken into account as an operating parameter unless it
increases the global (two-phase) flow rate. This approximation is
reasonable as long as we work with the lowest injection rate
(about 5% volume fraction) to minimize flow disturbance at the
injection point and to prevent drop coalescence: at this level, the
dispersed phase volume fraction does not influence the drop
breakup. The drop diameters obtained in the chaotic flow are smal-
ler than those in the helically coiled flow, the latter being smaller
than that in the straight tube.

For an oil flow rate of about 100 l h�1, a transition can be
observed on the drops diameters in the twisted pipe chaotic flow.
In fact, at this stage, which corresponds to a Dean number of about
60, the chaotic advection becomes significant. These results
confirm the idea that the chaotic advection flow improves the
liquid/liquid dispersion.

For the same runs, the standard deviation of the drop size
distribution, shown in Fig. 7, is about 20% less for the twisted pipe
than for the helically coiled pipe. This trend appears more clearly
Measured maximum droplet diameters.

Flow rate
(l h�1)

Straight pipe
(mm)

Helically coiled
pipe (mm)

Chaotic twisted
pipe (mm)

40 1.58 1.39 1.28
50 1.56 1.24 1.11
60 1.20 1.12 1.01
70 1.19 1.08 0.94
80 0.98 0.92 0.84
90 0.96 0.89 0.79

100 0.84 0.79 0.57



40 60 80 100 120 140
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 Straight Pipe

 Helically coiled

 Twisted pipe

E
xp

er
im

en
ta

l m
ax

im
u

m
 d

ia
m

et
er

s 
(m

m
)

Flow rate Q (l h-1)

Fig. 6. Experimental dmax versus oil flow rate.

0 20 40 60 80 100 120
0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
 Helically coiled

 Twisted pipe

Fitted curves:

 Helically coiled

 Twisted pipe

β
=

si
n

h
( k

)

Dean number, De

Fig. 7. Droplet diameter dispersion factor for helically coiled and chaotic twisted pipe – curves fitted using Savitzky–Golay method.

C. Habchi et al. / International Journal of Multiphase Flow 35 (2009) 485–497 489
for Dean numbers higher than 50, where the chaotic behaviour
begins to induce strains of the same magnitude as the shear flow.
The standard deviation seems minimal at low Dean numbers
where the mixing process is globally homogeneous over the whole
test section but has the lowest mixing efficiency. Increasing the
Dean number increases the standard deviation; i.e. the non-homo-
geneity of the observed emulsion is increased because of the poor
radial distribution of the fluid in the mixer cross-section until an
effective Dean number is achieved at which the homogeneity and
mixing efficiency are intensified.

The Sauter mean diameter d32 is a statistical parameter that can
be used to characterize the drop size distribution in the flow. This
diameter, given in Eq. (5), represents the mean surface diameter:
d32 ¼
R
‘3f ð‘Þd‘R
‘2f ð‘Þd‘

ð5Þ

where f ð‘Þ is the distribution function representing the proportion
of drops having a given diameter ‘ in the observed emulsion.

The proportionality between the Sauter mean diameter d32, and
the maximum drop diameter dmax is represented in Fig. 8. The
experimental results show that the d32 and dmax diameters are lin-
early correlated in the limit of validity, here 10 < De < 110. When
the slope of the fitted line is equal to one it implies that the Sauter
mean diameter is equal to the maximum drop diameter, and there-
fore that the drop fragmentation is uniformly distributed over the
whole observed emulsion. The more this coefficient is close to 1,
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the sharper is the distribution. It was found by Zhou and Kresta
(1998) that the slope value for agitated tanks and bent tubes
equipped with a static mixer is between 0.38 and 0.7; these values
are much smaller than that in the present work, meaning a much
less homogeneous droplet size distribution.

To investigate the efficiency of helically coiled and chaotic
twisted pipe flows, the energy cost is compared in Fig. 9 with that
of existing inline mixers reported by previous investigators (Haas,
1987; Streiff et al., 1997; Lemenand et al., 2003, 2005).

The interfacial contact area A is given by the Sauter diameter:

A ¼ 6U
d32

ð6Þ

where U is the mass fraction of the dispersed phase.
The energy consumption E is calculated from the pressure drop

DP:
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Fig. 9. Comparison of the energy consumption of the helically coiled and chaoti
E ¼ DP
q

ð7Þ

The pressure drop DP is obtained from the theoretical correla-
tion of Ito (1969) for laminar flow in curved pipes.

From Fig. 9, the helically coiled and chaotic twisted pipe flows
are located in the small-energy consumption zone (between 1
and 12 J kg�1) with a good interfacial area (between 300 and
1100 m2 m�3). The Sulzer mixer seems to have the highest interfa-
cial area but in the range of high energy consumption. The HEV has
the same behavior as the geometries studied in the present work,
which are both better than Kenics static mixer.

The very low energy consumption and the relatively good inter-
facial contact show that helically coiled and chaotic twisted pipe
flows can have good impacts in the industrial applications, espe-
cially when mixing fluids that cannot tolerate high shear rates.
100

omption, E (J.kg-1)

HEV

Kenics

Sulzer

c twisted pipes with classical static mixers (data from Thakur et al., 2003).
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3. Theoretical prediction of drop diameters

3.1. Breakup theory for laminar flows

The Taylor theory for drop breakup is based on a balance among
the following forces acting on a single drop of an immiscible fluid
in a continuous fluid flow:

– The external viscous flow forces that tend to deform the
drop; for example, in a shear flow the viscous flow force
can be written as:
s ¼ lc
_c ð8Þ
where _c is the shear rate.
– The interfacial or capillary forces that tend to preserve the

spherical shape of a drop of diameter ddrop; the pressure dif-
ference at the interface balances the interfacial tension r as
expressed by the Laplace formula
Pint � Pext ¼
4r

ddrop
ð9Þ
ðPint and PextÞ are the interior and the exterior pressures,
respectively.

– The internal viscous forces that resist deformation.

In order to characterize the relative effect of the different forces,
a dimensionless parameter Ca (the capillary number) is defined:

Ca ¼ Viscous forces
Capillary forces

¼ ddrops
2r

ð10Þ

Grace (1982) considered that drop breakup occurs when the
capillary number exceeds a critical value that depends upon the
viscosity ratio (the dispersed-phase viscosity by the continuous-
phase viscosity) as the manifestation of the drop’s internal viscous
resistance.

The dimensional values of the maximum diameter that can
withstand an existing stress s can hence be expressed by the
equation
dmax ¼
2r
s

Cacr ð11Þ

The critical capillary numbers are given by the Grace experi-
mental curves (Fig. 10) for simple shear flows ðCacr;shearÞ and elon-
gational flows ðCacr;elongationÞ. The effective capillary number in
laminar dispersion phenomena depends on the critical capillary
number, Cacr, of both simple shear and elongation, and on the ratio
of these deformation rates C ¼ _emax= _cmax.

By making simple linear interpolation we can find Cacr from the
following expression:

Cacr ¼ ð1� CÞCacr;shear þ CCacr;elongation ð12Þ

Knowing the viscous stresses, we obtain the C value, and by
substituting Eqs. (8) and (12) in Eq. (11), we can predict the max-
imum equilibrium diameter of the drop size distribution.

3.2. Determination of the strain rates in Dean flow

The analytical expressions for the velocity field in Dean flow in a
curved channel were obtained from Dean’s asymptotic solution
(Dean, 1928). In the present work, the analytical solution was cal-
culated from the stream function given by Jones et al. (1989)
expressed in a local frame of reference, as shown in Fig. 11. All
computations were carried out with MATLABTM. Table 4 presents
the dimensionless variables involved in the analysis.

As in all the previous work, the parabolic axial velocity profile is
assumed

w ¼ 2
R
a
ð1� r2Þ ð13Þ

The potential stream function in the cross-section is given by

w ¼ R

Wa2

mDe
72
ð4� r2Þð1� r2Þ2y ð14Þ

where r2 ¼ x2 þ y2 is the radial coordinate in the tube cross-section,
m the effective kinematic viscosity, and W the flow mean velocity.

In the local coordinate system ðx; y; zÞ, the secondary velocity u
and v can be written as



Table 4
Flow variables.

Dimensionless variable Dimensional variable

Radial distance r r0 ¼ ar
Time t t0 ¼ R

W t
Coordinate x x0 ¼ ax
Coordinate y y0 ¼ ay
Axial coordinate z z0 ¼ az
Velocity component u u0 ¼ a W

R u
Velocity component v v 0 ¼ a W

R v
Axial velocity w w0 ¼ a W

R w
Shear rate _c _c0 ¼ W

R
_c

Elongation rate _e _e0 ¼ W
R

_e
Stream function w ¼ R

Wa2
mDe
72 ð4� r2Þð1� r2Þ2y w0 ¼ Wa2

R w

Reynolds number Re ¼ 2 Wa
m

Dean number De ¼ a
4R Re2
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Fig. 11. Toroidal coordinates.
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u ¼ ow
oy

v ¼ � ow
ox

ð15Þ

which leads to the following two equations:

u ¼ að1� r2Þ½6y2ð3� r2Þ � ð4� r2Þð1� r2Þ�
v ¼ �6axyð1� r2Þð3� r2Þ

ð16Þ

where a ¼ Re
144.

For the fully developed flow, the velocity field in the pipe cross-
section appears to be independent of z. The effect of the radius of
curvature is not explicit in this system because of the dimension-
less scaling of the coordinates.

The generalized shear rate _c and elongation rate _e given by Eq.
(17), and calculated from the analytical derivatives of the velocity
components, are given in Germain (1962) and also in Bird (2007),
and are defined, respectively, as the second invariant of the defor-
mation rate tensor and the extension along the axis carried by the
first eigenvector of the deformation rate tensor. These expressions
are also used by Khakhar and Ottino (1986).
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ozþ
ow
oy

� �
u2þv2þw2

8>>>>>>>>>>><
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ð17Þ

In a flow, it is the maximal value of the shear and elongation rates,
_cmax helic and _emax helic, that determine the droplets’ maximum diam-
eter. These values are obtained from Eq. (17) and are expressed as:

_cmax helic ¼ 4 R
a 1þ 1

150
a
R De

� �0:5

_emax helic ¼ 1:1 R
a 1þ 2� 10�7 a

R De3
h i0:7

8<
: ð18Þ
The classical dimensionless maximal shear rate for the straight
pipe is given by

_cmax straight tube ¼ 4
R
a

ð19Þ

For the range of Dean numbers studied here, the maximum
shear and elongation rates in the flow cross-section fitted with
trend curves (Eqs. (18) and (19)) are presented in Fig. 12 for use
in the dispersion model. It can be noted that, following the analyt-
ical solution, the helical-pipe flow shear rate begins to deviate from
that of the straight pipe flow at an estimated Dean number around
De ¼ 55. On the other hand, for a Dean number of about 600, the
elongation rate begins to dominate the shear rate and governs
the dispersion process. This would lead to a decrease of 1/3 in
the diameter and would enhance the eventual benefits of the cha-
otic advection flow. This range of Dean number, however, cannot
be achieved in the present experimental setup and will not be dis-
cussed further.

The theoretical maximum diameters of the drops can be calcu-
lated by using Eq. (11) coupled with the above maximum shear
rates (Eqs. (18) and (19)). Theoretical and experimental maximum
diameters are compared in Fig. 13. The theoretical curve is unique
for the twisted-pipe flow (chaotic advection) and the helically
coiled pipe flow, since the Eulerian velocity fields are the same in
both cases.

The experimental maximum diameters of the drops are also
shown in Fig. 13. At least a part of the discrepancy between exper-
imental and theoretical results can be explained by the numerous
hypotheses of the theoretical models, both the Taylor–Grace model
(based on an assumed dynamic equilibrium situation) and the
Dean–Jones equations (which give an approximate solution for
the velocity field). Nevertheless, the maximum global difference
with experimental results does not exceed 10%, showing that the
present theoretical approach captures the basic physics underlying
the problem.

It can be noticed in Fig. 13 that the maximum drop diameters
measured in the chaotic flow are smaller than in the helically
coiled pipe flow, suggesting that, in addition to the deformation
rates responsible for drop breakup in the helically coiled pipe flow,
there exists another mechanism that leads to better drop fragmen-
tation in the chaotic advection flow. It is shown in the next section
through a Lagrangian analysis that this mechanism is, in fact, the
way in which droplets are randomly passed to zones of higher
shear and strain rates in the chaotic advection flow compared to
the helically coiled flow.
4. Lagrangian analysis of the flow

4.1. Mechanical history

This Lagrangian study is based on following a fluid particle tra-
jectory from its initial location at the inlet up to the outlet, as well
as on tracking the shear and elongations to which it is submitted,
i.e. its ‘‘mechanical history”. The Lagrangian equations for the pas-
sive advection of a fluid particle in a three-dimensional space are
given by the following dynamical system:

_x ¼ uðx; y; z; tÞ
_y ¼ vðx; y; z; tÞ
_z ¼ wðx; y; z; tÞ

8><
>: ð20Þ

The equations are the same for helically coiled and twisted pipe
flows. For the helically coiled pipe, there is no change of the frame
reference axes while passing from one elbow to another. For the
twisted pipe flow, the frame reference axes are rotated of ±90� as
follows: at the end of each elbow of even number, a rotation of



101 102 103

10

100

1000

10000

D
im

en
si

o
n

le
ss

 s
tr

ai
n

 r
at

es

Reynolds number, Re

 Straight pipe computed shear rate
 Dean flowcomputed shear rate
 Dean flow computed extensional rate

Fig. 12. Computed strain rates in straight pipe and helically coiled pipe – maximum values in pipe cross-section.

08060402

1

2

3

Reynolds number, Re

 Theoretical straight pipe 

 Experimental straight pipe 

M
ax

im
u

m
 d

ia
m

et
er

s,
 d

m
ax

 (
m

m
)

(a) 

08060402

1

2

3
 Theoretical helically coiled pipe

 Experimental helically coiled pipe

 Experimental chaotic twisted pipe

M
ax

im
u

m
 d

ia
m

et
er

s,
 d

m
ax

 (
m

m
)

Reynolds number, Re

(b) 
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90� is applied to the reference axes (i.e. we replace x by y, and y by
�x in the velocity equations), otherwise, at the end of each elbow
of odd number, a rotation of �90� is applied.

Integration along the trajectory is carried out in the numerical
procedure by a fourth-order Runge–Kutta scheme. The passage of
a particle from the outlet of one bend to the inlet of the next must
be calculated very accurately; the convergence is realized by a
Newton–Raphson iterative process.

The sensitivity of the trajectory to the time step dt was com-
puted by studying the time step at which the solution converges
to a constant value for different Dean numbers and the final posi-
tion of the particle becomes independent of the maximal dt value
given in

dt ¼
p
2

R
a

� 	
W
� 10�4 ð21Þ

Results for Dean number 150 are illustrated in Fig. 14, where
the trajectories of a passive fluid particle in the helically coiled pipe
flow are compared with those of a twisted-pipe flow along 25
bends and for two initial positions. In the chaotic flow, the particle
sweeps all the cross-section of the pipe, while in helically coiled
flow the particles remain on the same trajectory, depending on
their initial positions. It can even be noted that in the helically
coiled flow, for injection location x0 ¼ 0; y0 ¼ 0:43, the particle
leaves the last bend at exactly the same cross-sectional position
at which it entered the pipe; this point is the centre of the Dean
roll-cell at which u ¼ v ¼ 0 and therefore there is no radial
velocity.

Fig. 15 shows the Poincaré sections for the two configurations,
helically coiled and chaotic, and for an initial position of a disk of
diameter equal to 5% of the pipe cross-sectional diameter, made
up of 5000 neighbouring points. It is observed again that in the
helically coiled configuration, the particles remain in the Dean
roll-cell, while in the chaotic advection case the particles spread
over the whole tube cross-section. This has a direct consequence
for the mechanical history of the fluid particle. In fact, along its
chaotic trajectories the particle visits the zones of maximum shear
and elongational rates. Figs. 16 and 17 show the particle’s mechan-
ical history, that is, the dimensionless shear and elongation rates
that a fluid particle undergoes at each moment along 25 bends,



Fig. 14. Trajectories of passive tracer ðDe ¼ 150; Re ¼ 81; Nc ¼ 25Þ.

Fig. 15. Poincaré sections ðDe ¼ 150; Re ¼ 81; Nc ¼ 25Þ.
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for De ¼ 100 and initial position x0 ¼ 0; y0 ¼ 0:75. In the helically
coiled configuration, the particle has a periodic trajectory and
remains caged between two limiting (maximum and minimum)
values of the viscous stress. On the other hand, in a chaotic flow
the particle randomly undergoes all levels of strain rates, especially
the maximum values that are more efficient for drop breakup.

4.2. Residence time distribution (RTD)

The residence time distribution can be established by comput-
ing the trajectories for a sufficiently large number of particles
(about 6000), which are uniformly distributed in the inlet plane
section. Fig. 18 presents the RTD as a function of dimensionless
residence time defined in Table 4 for helically coiled pipe flow
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and twisted-pipe chaotic advection flow. In this figure are also
superposed the RTD for a straight pipe flow and an axial dispersed
plug flow as expressed in Eqs. (22) and (23), respectively:

f ðtÞ ¼ 1
2

PeL

pH

� �1
2

exp � PeLð1�HÞ2

4H

 !
ð22Þ

f ðtÞ ¼ 1
2tH2 H t � tm

2

� �
ð23Þ

where t is the residence time, tm ¼ L
W the mean residence time and

H ¼ t
tm

the reduced time.
It can be seen from Fig. 17 that even for a small Dean number of

100, while the helically coiled pipe flow presents a RTD profile sim-
ilar to that of straight pipe, the RTD profile of the chaotic advection
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twisted pipe can be modeled by an axial dispersed plug flow. In
this situation, the Péclet number based on the pipe length L,
PeL ¼ WL

Dax
, is about 43, where, Dax is the axial diffusion coefficient.

In agreement with the trajectories presented in Fig. 13, the
residence time dispersion is narrower in the chaotic advection con-
figuration, accounting for the radial transfer enhancement. This
result was also found by Castelain et al. (1997) in studying the
RTD in chaotic twisted pipe and helically coiled pipe flows.
5. Conclusions

Careful experiments were carried out on liquid/liquid disper-
sion in oil/water flows to assess the effects of chaotic advection
on droplet breakup, in terms of both the mean diameter and the
size homogeneity. Both properties have strategic implications in
many technological processes in the pharmaceutical and cosmetics
industries, as well as in new biological renewable-energy pro-
cesses. These experiments showed that the chaotic advection flow
generated in the twisted pipe clearly increases the efficiency of
contactors and mixers by providing smaller and more homoge-
neously dispersed droplets. The energy expenditure to obtain this
dispersion remains similar to that of the rival technology, the heli-
cally coiled mixer.

To clarify the physical mechanism underlying this high disper-
sion efficiency of the chaotic advection flow compared to similar
laminar flows, and also for the future design and optimization of
multifunctional heat exchangers and reactors, a mechanistic mod-
elling of this flow was undertaken. Both Eulerian and Lagrangian
approaches were applied to three flow geometries in the laminar
regime: straight, helically coiled and twisted pipes. While in most
fluid dynamics problems the ultimate aim is to obtain the velocity
field in the flow, in the chaotic advection problem the velocity field
is the starting point. To this end, we used the analytical expression
of the stream function in a curved pipe obtained by Dean (1927) as
the building block of the model. Shear and elongation rates were
then calculated and were used in conjunction with Taylor–Grace
theory to study droplet breakup.

It was shown that the Eulerian approach cannot explain the
higher dispersion efficiency of the chaotic advection flow. On the
contrary, the Lagrangian approach allows calculation of the fluid
particle trajectories and especially the ‘‘mechanical history” of a
fluid particle. From this we showed that chaotic advection causes
fluid particles to make random visits to zones of high shear and
elongation rates and therefore contributes further to droplet
breakup.

The model also allowed calculation of the RTD of fluid particles
in helically coiled and twisted-pipe flows. The RTD analysis
revealed that even for very small Dean number laminar flows,
the chaotic advection flow shows a RTD distribution as narrow as
an axially dispersed plug flow, while the helically coiled tube flow
has a residence time distribution similar to a straight tube flow.
Thus in liquid/liquid dispersion the chaotic advection flow has
two principal advantages over its counterpart helically coiled pipe
flow: first, generation of smaller droplets, second, a more homog-
enous droplet diameter distribution.

The mechanistic model developed in this work provides a solid
basis for obtaining physical insight into dispersion phenomena by
laminar flows and offers a powerful design and optimization tool
to designers of future innovative devices. Future work will focus
on gas/liquid dispersion by chaotic advection.
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